Fair k-Center Clustering for Data Summarization
Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern

A linear-time approximation algorithm

We need a slightly more general form of the standard (unfair) k-center problem. Algorithm 1 can be easily adapted to yield a 2-approximation algorithm for it.

Algorithm 2 k-center with given centers $C_0 \subseteq S_1$

\[
\minimize_{C = \{c_1, \ldots, c_k\} \subseteq S\text{ with }d(c, S) = \min_{c \in S} d(c, S)} \max_{c \in C} d(s, C)
\]

Our algorithm is a recursive algorithm with respect to the number of groups m. It is easiest to understand in the case of two groups.

Two groups ($S = S_1 \cup S_2$)

1) Run Algorithm 1 on S with $k = k_1 + k_2$. Let \hat{C} be its output and $\hat{k}_1 = |\hat{C} \cap S_1|$, $i \in \{1, 2\}$. The cost of \hat{C} is at most twice the optimal cost.

2) If $\hat{k}_1 = k_1$ and $\hat{k}_2 = k_2$, we are done. Assume that $\hat{k}_1 > k_1$ and $\hat{k}_2 < k_2$.

As long as $\hat{k}_1 > k_1$, there is a center in $\hat{C} \cap S_1$ that has an element of S_1 in its cluster, replace such a center with an element of S_1 in its cluster. Due to the triangle inequality, the cost of \hat{C} is at most doubled. Once we have made all such available swaps, the remaining clusters with a center in S_1 are entirely contained within S_1. Denote the union of these clusters by $S' \subseteq S_1$.

3) Apply Algorithm 2 to S' with $k = k_1$ and the centers in $\hat{C} \cap S_1$ as given centers C_0. Denote its output by \hat{C}. Recall that $\hat{C} \subseteq S_1$.

4) We can show that the cost of $\hat{C} \cup (\hat{C} \cap S_1)$ is at most five times the optimal cost.

Return $\hat{C} \cup (\hat{C} \cap S_1)$ arbitrary elements of S_2 as final output.

Example:

1) $\hat{C}_1 = S_1$ and $\hat{C}_2 = S_2$

2) $\hat{C}_1 = S_1$ and $\hat{C}_2 = S_2$

3) $\hat{k}_1 = 4$, $\hat{k}_2 = 0$ and $\hat{k}_2 = 1$, $\hat{k}_1 = 0$.

4) $\hat{k}_1 = 3$, $\hat{k}_2 = 1$

Our algorithm is a linear-time 5-approximation algorithm when $m = 2$.

Theorem 1 Our algorithm is a 5-approximation algorithm for the fair k-center problem with $m = 2$ groups, not a $(5 - \varepsilon)$-approximation algorithm for any $\varepsilon > 0$. It has running time $O(k|S|)$, assuming d can be evaluated in $O(1)$.

Arbitrary number of groups:

The main idea is the same as for the case $m = 2$.

1) Run Algorithm 1 on S with $k = \sum_{i = 1}^{m} k_i$.

2) Exchange centers for elements in their clusters such that the number of centers from S_i comes closer to k_i.

3) Run Algorithm 2 on a subset $S' \subseteq S \setminus S_i$, where the number of centers from S_i is less than or equal to k_i (we may consider S_i to have been “resolved”).

The difficulty with this idea comes from the exchanging process:

By constructing a graph on the set of groups and computing all shortest paths on it we can overcome this difficulty. Our resulting algorithm has the following guarantee:

Theorem 2 Our algorithm is a $(3 \cdot 2^m - 1)$-approximation algorithm for the fair k-center problem with m groups, but not a $(8 - \varepsilon)$-approximation algorithm. It has running time $O(k|S|\log^2|S|)$, assuming d can be evaluated in $O(1)$.

What is the exact approximation factor of our algorithm for $m > 2$?

Experiments

![Approximation factor of our algorithm (Alg. 4) and the algorithm by Chen et al. (2016) (M.C.) in various scenarios.](image)

The cost of the output (left) and running time (right) of our algorithm (Alg. 4) and the algorithm by Chen et al. (2016) (M.C.) as a function of $|S| = n$. The images of the medical doctors were found on https://pixnio.com and https://commons.wikimedia.org and are in the public domain.

References
